首先举个接近生活的例子,你作为一个优秀的算法工程师,你的目标是用机器学习算法来解决生活中的许多实际问题。 在解决二分类问题时,通过交叉检查方法对模型进行训练,发现测试集上的AUC指标为0.99时,我想你可以开发出这样的牛逼模型,以获得今年年底奖。 之后,系统工程师将该模型工程化,引进生产环境,正式开始解决实际业务问题。 当你向同事炫耀模特有多厉害的时候,模特在生产环境下的效果表现数据出来了。 看完后,双脚突然变软,同事不帮忙的话,就会倒在地上。
上述模型的出现在脱机评价时效果好,在线效果差的原因有很多,其中有时也被称为数据泄密( data leakage )。 用于训练机器学习算法的数据集包括应该预测的,即,部分测试数据被泄密训练集。 这里所说的信息是关于虽然能够在目标标签和训练数据中利用,但在实际世界中不能利用的、不合法的数据的信息。
数据泄密通常以非常微妙而难以理解的方式发生。 数据泄密发生时,模型脱机的评价结果为“虚高”。 所谓“虚高”,是指在离线阶段评价模型时,虽然在测试装置中表现得很好,但是在正式导入到生产环境中解决实际业务问题时,效果非常差。 也就是说,在离线评价中过高地估计了模型的能力。
前面已经描述了数据泄密的定义,但是它是抽象的,在此举一些例子说明数据泄密。 易于理解的泄密示例:如果训练数据包含测试数据,模型将过于适合。 另外,以预测目标作为模型的特征,模型的结论基本上类似于“苹果是苹果”。 如果某个东西上贴着苹果的标签,模型就意味着它是苹果的预测。 让我们看看KDD比赛中更微妙的泄密例子。
预测潜在客户是否在银行开户时使用的特征之一是“账号”。 很明显,只有开户的顾客在这个字段有价值。 训练时没有任何问题,但实际进行预测时,对所有顾客来说,这个特征是空的。 因为在预测之前不知道顾客的账户有多少,所以如果在预测之前说知道顾客的账户的话,预测模型会是什么呢
在零售网站中,如果预测用户在浏览当前页面后,下次要离开网站或浏览其他新页面,则数据泄露的一个特征是session length,即用户访问网站时浏览的页面的 该特征包含用户访问了多少次的将来的信息。 一个解决方案是将session length替换为page number in session。 在session中,此前的页面阅读总数。
在电子商务网站,向用户暴露商品后,是否购买的问题经常被预测。 显然,在这个问题上,商品的好评率是非常重要的要素,在一般的训练中使用过去的数据来制作模型,例如使用过去一周的数据,为训练数据来制作商品的好评率的情况下,如果使用该商品的当前时间的好评率,则该特征包含未来的信息,因此在曝光时该商品的好评率 例如,在2018年10月10日的22分30秒,商品I向用户u公开,最终用户u购入的商品公开时的好感度为99%,一周后,2018年10月17日的22分30秒,该商品的好感度为86%,此时使用以前的数据制作了训练样本的情况下
正在开发诊断特定疾病的模型,现在的患者训练组包括患者是否为该疾病做了手术的特征。 显然,使用这一特征可以大大提高预测的准确性,但这显然是有数据泄漏的。 因为在患者的诊断结果不出来之前,不能知道这个特征。
另一个相关的例子是患者ID,可以根据特定的诊断路径被分配患者ID。 也就是说,去专家的结果是最初的医生判断有可能生病,所以ID有可能不同。
数据泄密可分为训练数据泄密和特征泄密两大类。 训练数据泄密是测试数据和未来数据通常混在训练数据中,特征泄密是特征中包含与实际标签有关的信息。
泄密培训数据的情况可能包括:
预处理使用整个数据集(培训集和测试集)进行计算,结果会影响培训期间显示的内容。 这可以包括计算用于标准化和定标的参数、搜索用于检测和删除异常值的最小和最大特征值、使用变量在整个数据集合中的分布估计训练集合中的缺失值、以及执行特征选择的场景:
当处理时间序列数据时,另一个重要问题是未预期地使用未来事件的记录来计算预测的特性。 让我们看一下谈话长度的例子。
特征性泄密的原因可能包括:
有些不正当的特征被删除,但包括相同或相似信息的特征被忽略(例如,患者是否动过手术的特征在前一个示例中被删除但是患者ID未被删除)。
在某些情况下,数据集记录可能被有意地随机化,或者包含有关用户的特定信息(如用户的名称和位置)的字段可能被匿名化。 根据预测任务的不同,您可以取消匿名化,以查明在实际使用中不合法的用户和其他机密信息。
如果您知道什么是数据泄密,下一步就看看如何检测数据泄密。
在构建模型之前,可以对数据进行搜索分析。 例如,查找与目标标记或值高度相关的特征。 例如医学诊断的例子中,患者是否为那个疾病做了手术这一特征,与是否最终得了病非常有关联性。
构建模型后,可以检查模型中是否有非常重要的特征泄密。 或者,在构建模型后,如果发现模型的效果惊人,则需要考虑是否发生了数据泄密。
另一种更可靠的检漏方法是有限的实际安排训练模型,观察训练时的性能与实际环境的表现之间是否存在较大差异。 然而,如果差异较大,则这可能是由于过拟合。
如果检测到数据泄密,该如何修复呢?
首先,在预处理数据时,应该使用分割的训练集而不是使用整个数据集计算。
在处理时间序列问题时,必须使相关特征的时间戳与发生时间一致,以免训练数据中出现来自未来的信息。
并且,对于与预测目标的相关性特别高,或者模型中的权重特别高的特征,要好好检查是否发生了数据泄密,如果是的话,一定要排除。
【编辑推荐】
安企神软件系统加密软件–企业文件防泄密专家!防拷贝复制、防文件传播泄露!轻松实现单位内部文件自动加密保护,加密后的文件在单位内部正常流转使用。未经许可,任何私自拷贝加密文件外发出去,都将打开为乱码,无法使用!
对于发送给客户等第三方的文件,可实现控制打开时间和打开次数等防泄密参数!同时可设置对员工电脑文件自动备份,防止恶意删除造成核心数据的遗失!从源头防止企业核心文件被外泄!
相关内容:加密软件,文件加密,文档加密,图纸加密软件,防泄密软件,CAD加密软件,企业文件加密
全球著名减震器制造商——天纳克携手安企神共筑安全制造新防线
天纳克(北京)汽车减振器有限公司天纳克(北京)汽车减振器有限公司成立于1995年,是天纳克在中国最早投资的合资企业。公司集设计、开发、生产及销售汽车减振器于一身。作为天纳克全球网络的一部分,能充分享受天纳克全球的技术积累经验和国际领先的设计理念,加之先进的生产设备和工艺技术。天纳克(北京)汽车减振器有限公司完全能保证为...
筑牢安全防线:安企神企业助力特种设备机械企业数据防泄密解决方案
西安苛菲特机械设备有限公司 西安苛菲特机械设备有限公司致力于特种设备的发展,专业从事特种设备的研发、制造和销售。目前已成为有色冶金特种设备、大型船舶特种设备、煤化工特种设备的领军品牌,并在业内得到了“ 特种设备专家”的称号。公司以打造国内一流特种设备为使命,主要产品定型为高品质特种(高温、高压、高合金)流量控...
安企神软件:三峡大学数据安全的坚实后盾与合作伙伴
学校介绍三峡大学是经国家教育部批准,由原武汉水利电力大学(宜昌)和原湖北三峡学院于2000年5月25日合并组建。2018年,学校被省人民政府列为“国内一流大学建设高校”,水利工程、土木工程、电气工程等3个学科被列为“国内一流学科建设学科”;目前,三峡大学已发展成为水利电力特色与优势比较明显、综合办学实力较强、享有较高社...
零部件企业数据保卫战:安企神软件如何筑起防泄密铜墙铁壁
瑞安市特迩翡汽车配件有限公司企业背景瑞安市戴尔菲汽车零部件有限公司一直致力于高共轨电喷(EFI)发动机和SCR排气系统的研发。通过了16949质量管理体系和CE认证,公司具备自主开发汽车电子系统和核心软件的技术能力。公司力争成为以市场为导向、以技术为支撑、以质量为先、以人才为本的知名创新型企业。产品包括:氮氧化物传感器...
强强联合!安企神软件携手瀚颐共筑汽车行业终端安全防线
瀚颐上海汽车电子科技有限公司EAST瀚颐中国团队成立于2015年。是国际AUTOSAR软件联盟的研发伙伴单位。具备汽车电子硬件设计、软件开发、CAN网络集成、系统集成测试以及项目管理的全面研发能力。专注于汽车电子以及相关产业并拥有25年以上的专业经验,拥有来自于德国和中国业内专家和高管组成的顾问团队,并向全球汽车行业客...