安企神电脑监控软件 在线试用
扫码咨询客服
安企神电脑监控软件、局域网监控软件
首页
功能对比
下载中心
购买咨询
客户列表
关于安企神

基于Hopfield混沌神经网络的彩色图像加密算法

更新时间:2022-10-28 15:45:48


本文简介:信息安全在网络通信、多媒体系统、医疗图像、远距离医疗等许多领域起着至关重要的作用。近年来,吸引着越来越多研究者的关注。置乱一扩散机制为一种最常见的图像加密机制,在这种机制中排列和扩散被认为是两个独立的阶段,它们都要求扫描图像以获得像素值:排列阶段改变图像像素的位置,但不改变它们的值;在扩散阶段,像素的值发生一系列修改,以至于某一像素值的微小变化都将扩散到几乎整幅图像。整个排列一扩散过程重复一定次数

基于Hopfield混沌神经网络的彩色图像加密算法

信息安全在网络通信、多媒体系统、医疗图像、远距离医疗等许多领域起着至关重要的作用。近年来,吸引着越来越多研究者的关注。置乱一扩散机制为一种最常见的图像加密机制,在这种机制中排列和扩散被认为是两个独立的阶段,它们都要求扫描图像以获得像素值:排列阶段改变图像像素的位置,但不改变它们的值;在扩散阶段,像素的值发生一系列修改,以至于某一像素值的微小变化都将扩散到几乎整幅图像。整个排列一扩散过程重复一定次数以达到安全性水平要求。因此,在排列和扩散阶段的控制参数成为算法安全性与复杂性的决定性要素之一。

一个好的加密算法应该是密钥敏感的,并且密钥空间应该足够大以抵抗暴力攻击。混沌变换所具有对参数和初值极端敏感的基本特性和密码学的天然关系,使应用混沌系统生成密钥及参数成为安全通信领域一项非常重要的研究课题。由于神经网络的复杂性和时变结构使其作为信息保护的另一选择被广泛的应用,包括对数据的加密、认证、入侵检测等。结合了神经网络与混沌,混沌神经网络(CNN)兼具二者的特性。较传统的混沌映射而言具有更为复杂的时空复杂度,其良好的置乱和扩散特性已经成功用于密码是设计。

本文设计算法使用混沌复合映射控制参数以进行图像置乱。分离输出信号的三个色彩分量使用三个神经元的Hopfield混沌神经网络预处理图像加密,得到置乱密钥流。此处有两个不同初始条件和参数的复合混沌映射分别被用于生成排列阶段控制参数和生成混沌神经网络系统的控制参数。

一、复合混沌映射与混沌神经网络模型

1、复合混沌映射

由Logistic映射的稳定周期3轨道经历倍周期分岔过程可知,帐篷映射Xn的值始终处于(0,1)上,因此,将帐篷映射的方程代人到Logistic映射中,便可以得到一个新的映射TLM:

基于Hopfield混沌神经网络的彩色图像加密算法

μ∈[o,2],xn∈(o,1)。其混沌吸引子分布如图1。

基于Hopfield混沌神经网络的彩色图像加密算法

计算TLM映射的Lyapunov指数在μ=0.37--开始恒大于O,而不存在抛物线映射那样间或出现小于O的情况,也就是说μ从0.37变化到2的整个区间上,映射不存在倍周期的窗口区域,从而始终处于
混沌状态。

2、Hopfield混沌神经网络模型

描述Hopfield混沌神经网络模型如下:

基于Hopfield混沌神经网络的彩色图像加密算法

其中,f(x)=tanh(x)

其混沌吸引子分布如图2。

基于Hopfield混沌神经网络的彩色图像加密算法

二、图像加密解密算法

本加密算法由置乱和扩散两个阶段构成,其中,由复合混沌映射生成Cat映射的控制参数被用于置乱阶段,该TML映射的参数和初始条件分别称作MTL1和XTLl(O)。TML映射迭代m1次生成Cat映射的控制参数,在稍后的部分进行描述。MTL1和XTLl(O)和m1是本算法的三个加密密钥。在扩散阶段,Hopfield混沌神经网络作用于三个色彩序列信号输出用于改变像素的值(图像均衡化),进行图像扩散。本设计方案中,TLM映射使用不同的初始条件和控制参数称为XXL2(0)和MTL2用于生成高阶混沌系统的初始条件。在扩散阶段,TLM映射分别迭代mr,mg,mb次,得到Hopfield神经网络的三个初始条件。与第一逻辑映射相似,XXL2(0)和MTL2,以及mr,mg,mb也作为加密密钥。由Hopfield神经网络生成密钥流用于图像均衡化,将在本部分的其余部分进行描述。该置乱一扩散过程重复R次.R也作为加密密钥。加密算法流程图如图3所示。

基于Hopfield混沌神经网络的彩色图像加密算法

令原始图像为NxNx3的彩色图像,安全密钥分别为:XTLl(O),MTL1,XTL2(0),MTL2,mi,mr,mg,mb和R,r=1。

提取原始图像RGB三个分量,将原始图像转换为矩阵DRDGDB。

以初始条件XTLl(O)迭代TLM映射m1次,得控制参数XrLl(r);以初始条件XTl.2(0)迭代TLM映射mr,mg,mb次,得控制参数XrLR(r)XTLG(r)XTLB(T),分别用于置乱和扩散阶段。

在排列阶段,使用可变参数Cat映射,Cat映射的方程定义为:

基于Hopfield混沌神经网络的彩色图像加密算法

由于det(A)=1,控制参数p,q如下式描述:

基于Hopfield混沌神经网络的彩色图像加密算法

其中:

基于Hopfield混沌神经网络的彩色图像加密算法

 

基于Hopfield混沌神经网络的彩色图像加密算法

其中D=[DR DG DB]T,分别为NxN的方阵。fatmpa(.)为(7)式所示置乱方程,E=[ER EG EB]。

将置乱图像的像素按照从左到右从上到下的顺序重排矩阵得到序列得:

基于Hopfield混沌神经网络的彩色图像加密算法

在扩散阶段,令X=fhopfiels(XTI2),其中,fllup/teld(.)为等式等式(2)描述的Hopfield混沌系统。XTL2 =[XTLR XTLG XTLB]T,为系统初始条件。迭代该系统NxN次实现图像均衡化,得X序列:

基于Hopfield混沌神经网络的彩色图像加密算法

生密钥通过下式求取:

基于Hopfield混沌神经网络的彩色图像加密算法

其中S初值Si,o=127,i∈(R,G,B),j=1,2,….(NxN),K为3x(NxN)的矩阵。

将置乱图像通过以上密钥流进行加密,得密文:

基于Hopfield混沌神经网络的彩色图像加密算法

其中,I∈(R.G,B),J=1,2,...,(NxN),C为3x (NxN)的矩阵,bitxor(x,y)返同两个整数x和y的位异或值。

矩阵C的每一行均为lx(NxN)的行向量,将其进行矩阵变换,转化为(NxN)的矩阵以获得加密图像的三个色彩分量,在将其合成彩色图像。判断当前轮次是否为最后轮次(r<R),若不是返回,循环执行加密过程;否则,得到最终)加密图像Cfinal。

解密阶段为加密阶段的逆过程A由此,将反转的扩散和排列行为分别应用在加密图像上。

三、性能分析

一个好的加密过程应该足密钥敏感的,并且密钥空间应该足够大以抵抗暴力攻击。同时它也应该足够健壮以抵抗各种密码分析和统计攻击。在这一部分,对于本设计图像加密算法及行了安全性能分析以及统计和敏感性分析口分析表明,本密码系统可以f求护密钥和明文以抵抗各种常见的攻击。其中包括已知明文攻击,选择明文攻击,密钥空间,直方图研究,密钥敏感性分析,加密图像信息熵,加密图像相邻像素相关性分析。

1、已知明文和选择明文攻击

式(8)所示扩散密钏矩阵K不仅仅依赖于加密密钥(复合映射的初始值和控制参数,迭代次数R和m,以及高阶混沌细胞神经I蜘络的初始条件),而且还依赖于原始图像本身。因此,即使是相同密钥对于不同图像进行异或操作,该阶段密钥流也是不同的。除此之外,由于渐钥流是可变的,通过返回给加密系统一个黑图像进行密码分析是无效的。由于排列阶段的控制参数和扩散密钥流部足明文图像相关的。所以,本算法可以抵抗已知明文攻击和选择明文攻击。

2、密钥空间

本加密算法,使用两个复合映射初始值和控制参数作为密钥。假设每一个密钥小于10则精确度为10-14,密钥空间为1056。而且,迭代次数R和m也都用于密钥。考虑该密码,密铡空间足够大以抵抗各种暴力攻击,建议密钥空间密钥该至少264才能够抵抗器力破解攻击达到安全水平。

3、统计分析

本部分敏感性分析刚于研究算法的性能。为展示模型的可行性,我们使用256x256的“Lena”图像作为明文图像。加密密钥为:

基于Hopfield混沌神经网络的彩色图像加密算法

(1)直方图分析

一幅图像直方网描述的是像素密度分布于它们的色彩强度水平的关系。原始明文图像,加密图像的直方图分别由图3和图4给出。如图所示,加密图像的直方图为均匀分布,具有很好的统计特性类似白噪声。因此不能从加密图像中获取原始图像像素的相关信息。因此,本算法不会为任何统计攻击提供任何线索。

基于Hopfield混沌神经网络的彩色图像加密算法

 

基于Hopfield混沌神经网络的彩色图像加密算法

 

(2)密钥敏感性

为了说明本算法的密钥敏感性,在等式(10)的相同条件下进行试验。对密钥进行细微调整。本例子中,分别将密钥中的XTL1(O),XT12(0),mtl1,mt2分别与原密铜柑差10-14密钥变化如下:

基于Hopfield混沌神经网络的彩色图像加密算法

图6所示为Lena罔像使刚这四种情况解密的结果。可见,即便密钥只有微小的差别,解密图像也是与明义绝对不同的,直方图依旧是随机性的。因此,这是因为本算法的高复杂性和高阶混沌特性。

基于Hopfield混沌神经网络的彩色图像加密算法

(3)信息熵分析

此处,执行了该设计加密解方法的实验以及分析加密图像图4。“Lena"加密图像信息熵。对于加密图像,计算像素灰度值的信息熵H(m)=7.9551,由AES算法加密图像的值为H (m)= 7.91。本算法的信息熵一诈常接近于理想值8。结果表示,加密刚像接近于随机信号源,可以安全抵抗熵攻击。

(4)相关系数分析

相邻像素之间的低相关性是另外一个优秀加密的特征。栩关系数rxy为图像灰度值的一组相邻像素对(xi,Yi,i=1,2.….Ni)。可以通过下面的公式:

基于Hopfield混沌神经网络的彩色图像加密算法

随机选取“Lena”原始图像和加密图像的4000对水平相邻像素,垂直相邻像素,以及对角相邻像素的相关性,由图7所示。显然本算法破坏了相关性的有效性,该图像加密算法有很慢的抵抗统计攻击的能力。

基于Hopfield混沌神经网络的彩色图像加密算法

由图中数据可见,原始图像的相邻像素之间有很高的相关性。而加密图像相邻像素之间的相关性几乎可以忽略不计。

小知识之吸引子

吸引子是微积分和系统科学论中的一个概念。一个系统有朝某个稳态发展的趋势,这个稳态就叫做吸引子。吸引子分为平庸吸引子和奇异吸引子。

例如一个钟摆系统,它有一个平庸吸引子,这个吸引子使钟摆系统向停止晃动的稳态发展。

立即下载试用

基于动态信任的内生安全架构

动态信任是一种新型的信息安全架构,近年来随着物联网、云计算和移动化等技术的发展而逐渐受到关注。传统的信息安全架构往往是建立在固定的信任模型之上,而动态信任则更加灵活和自适应,可以根据实际情况动态调整信任度,从而提高整个系统的安全性。本文将从以下几个方面来探讨基于动态信任的内生安全架构,包括动态信任的概念、功能特点、应用场景、实现方法等。

一、动态信任的概念

动态信任是指基于多方交互和数据分析,根据实时风险评估结果自适应调整信任度的一种信任模型。它与传统的访问控制模型不同,传统模型是基于身份验证和访问授权来限制访问权限的,而动态信任则更加注重实时风险评估和动态调整信任度。动态信任由于其灵活性和自适应性被广泛应用于物联网、云计算和移动化等领域,成为一种新型的内生安全框架。

二、动态信任的功能特点

1、实时风险评估
动态信任的核心是实时风险评估,通过对多方交互数据的分析、模型预测和机器学习等方法,从而实现对用户、设备、应用以及网络等方面的风险评估。同时,动态信任支持多种评估方法,可以根据实际情况选择不同的评估方法来评估系统的安全性。

2、动态调整信任度
动态信任可以根据实时风险评估结果自适应调整信任度,从而提高整个系统的安全性。例如,对于一个新的设备或应用,由于缺少足够的信任度,系统可以限制其访问权限,等到其表现良好后再逐步增加信任度。另外,在不同的应用场景中,可以根据不同的容错需求设置不同的信任阈值,从而更加灵活地调整系统的安全性。

3、安全事件的自适应响应
基于动态信任的内生安全框架可以根据实时风险评估结果自适应响应安全事件,例如实时阻断异常访问或异常信任行为等,从而保护整个系统的安全。另外,动态信任还可以实现安全威胁预警和安全日志审计等功能,为后续的安全事件响应提供支持。

三、动态信任的应用场景

基于动态信任的内生安全框架适用于物联网、云计算和移动化等领域,可以提高系统的安全性和稳定性。具体应用场景如下:

1、物联网领域
对于物联网场景,动态信任可以实现对设备、应用、用户等的实时风险评估和动态信任管理,从而保护整个物联网系统的安全。例如,可以基于设备的行为、属性等数据进行风险评估,判断设备是否存在安全风险,并进行相应的防御措施。

2、云计算领域
对于云计算场景,动态信任可以实现对用户、应用、网络等的实时风险评估和自适应调整信任度,从而提高整个云计算系统的安全性和稳定性。例如,可以根据用户的访问情况和应用的行为数据等进行风险评估,判断用户和应用是否存在安全风险,并相应的限制其访问权限。

3、移动化场景
对于移动应用场景,动态信任可以实现对应用、用户等的实时风险评估和自适应调整信任度,从而保护整个移动应用系统的安全。例如,可以根据应用的行为数据、用户的位置信息等进行风险评估,判断应用和用户是否存在安全风险,并相应的限制其访问权限。

四、动态信任的实现方法

基于动态信任的内生安全框架的实现方法主要包括以下几个方面:

1、机器学习技术
机器学习技术可以实现对多方交互数据的分析和预测,进而实现实时风险评估和动态信任管理。例如,可以使用支持向量机、神经网络、朴素贝叶斯等算法对数据进行分类和预测,从而实现安全风险评估。

2、分布式计算技术
分布式计算技术可以实现对大规模数据的分析和处理,多种评估方法的实现和系统的扩展性等。例如,可以使用MapReduce等分布式计算技术来实现大规模数据的分析和处理,从而提高系统的效率和准确性。

3、安全日志管理技术
安全日志管理技术可以实现对安全事件的记录、分析和响应等功能,从而提高系统的安全性和稳定性。例如,可以使用SIEM技术来实现安全事件的实时监测、分析和响应,从而提供相应的安全保障。

总之,基于动态信任的内生安全框架是一种新型的信息安全架构,其具有灵活性和自适应性等特点,可以根据实际情况动态调整信任度,提高整个系统的安全性。在物联网、云计算和移动化等领域具有广泛的应用前景,同时也面临着各种技术挑战和安全威胁。因此,我们需要进一步探索动态信任技术的研究和应用,并积极探索基于动态信任的内生安全框架的实现方法和应用策略,从而实现网络信息安全的可靠保障。

本文为收集整理,文章部分观点不代表本站观点,如有侵权或其它问题请反馈客服。https://www.wgj7.com/cjwt/16432.html