安企神电脑监控软件 在线试用
扫码咨询客服
安企神电脑监控软件、局域网监控软件
首页
功能对比
下载中心
购买咨询
客户列表
关于安企神

基于合成混沌序列的图像加密算法

更新时间:2022-10-28 15:44:33


本文简介:基于合成混沌序列的图像加密算法是利用改进的logistic映射和具有一次耦合项的三维logistic映射两个混沌系统形成密钥对图像文件进行加密,从而达到隐藏信息的目的。一、混沌加密算法1、混沌的主要特征在传统的加密系统中,伪噪声序列即PN( Pseudo-Noise)序列得到了广泛应用。最常用的PN序列是最大长度线性码序列(Maximum length linear code sequences)

基于合成混沌序列的图像加密算法

基于合成混沌序列的图像加密算法是利用改进的logistic映射和具有一次耦合项的三维logistic映射两个混沌系统形成密钥对图像文件进行加密,从而达到隐藏信息的目的。

一、混沌加密算法

1、混沌的主要特征

在传统的加密系统中,伪噪声序列即PN( Pseudo-Noise)序列得到了广泛应用。最常用的PN序列是最大长度线性码序列(Maximum length linear code sequences),又称为m序列,是由线性反馈移位寄存器LFSR( Linear Feedback Shift Register)产生的。其特点是具有周期性和伪随机性。 LFSR方法在密码分析领域已经被认为是不可靠的。 混沌现象是在非线性动力学系统中出现确定性的、类随机的过程,这种过程非周期、不收敛但有界,并且对初始状态具有极其敏感的依赖性,即初始状态只要有微小的差别,两个混沌系统在较短的时间后就会产生丽组完全不同的、互不相关的混沌序列值。因此,混沌系统可以提供大量的密钥。

2、混沌加密算法分析

混沌序列在密码学方面的应用起源于20世纪80年代末期,由英国数学家Matthews首先提出,其后得到了一定发展。现有的混沌伪随机序列分为两类:实值混沌伪随机序列和在实值序列基础上得到的二进制混沌伪随机序列。 目前常用的有采用实值混沌伪随机序列和采用实值序列基础上得到的二进制混沌伪随机序列,二者都是基于一维logistic映射的加密算法。实验证明:基于一维logistic映射的一次加密图像的混沌特性不很明显,即原图的轮廓仍较明显,需进行多次加峦才达到较好的效果。而采用两种混沌映射交替产生二进制混沌伪随机序列对明文位串进行加密,由于明文文件加密结果很难通过明文位串间相关性解密,因此加密难度较小;而图像文件加密除要将原像素改变以外,还要在整个图像上不能看出原图的任何轮廓,因为在图像识别与处理方法中,都是利用图像景 物边缘轮廓和景物与背景在灰度上的区分来进行图像识别和处理的,因此加密要求相对较高,加密难度相对较大。

3、混沌序列遇到的障碍

混沌序列发生器总是用有限精度来实现,其特性会由于有限精度效应与理论结果大相径庭。因此,有限精度效应是混沌序列从理论走向应用的主要障碍。其次,一维logistic映射:

基于合成混沌序列的图像加密算法

当λ∈(3. 5699…,4)时,出现完全混沌现象。该混沌函数的两个问题:(1)函数的固定点(吸引子),即多次迭代而趋近某一固定值;(2)出现“稳定窗”,即某区间的点聚集,窗中产生的迭代序列不能提供作为密钥流所需的安全性。

二、基于合成混沌序列的加密算法

1、两种混沌映射

本文提出的新加密算法将采用以下两种混沌映射:

(1)改进的logistic映射:

基于合成混沌序列的图像加密算法

该系统的混沌性能比原系统好,克服了原系统中前面提到的两个问题。

(2)具有一次耦合项的二维logistic映射:

基于合成混沌序列的图像加密算法

其中,x,y,μ1,μ2,γ∈(0,1)。当控制参数μ1,μ2相差较大且其中一个较小时,μ1=0.8,μ2=0.2,随参数γ的增加,系统由Feigenbaum途径走向混沌,当γ=0.31时进入混沌。当控制参数μ1,μ2相差不很大时,如μ1=0.7,μ2=0.3,随参数γ的增加,系统由Pomeau-Maimeville途径走向混沌,当γ=0. 45时进入混沌。

2、加密算法描述

(1)为两个混沌映射置初始迭代值和相应参数,并先迭代若干次,使得加密时使用的数据混沌特性更好。

(2)判断图像是否处理完毕。若没有,密钥chaos置0,转(3);否则,转(5)。

(3)读取图像像素unchValue,迭代改进的logistic映射,对迭代结果取小数点后5位有效数字,并模16得k1,chaos=chaos∧k2;接着,迭代具有一次耦合项的二维logistic映射,对迭代结果取小数点后5位有效数字,并模16得k2,chdOS=(chaos<<4)∧k2。

三、基于合成混沌序列的图像加密算法分析

1、实验数据

实验以265×256 ×8的图像(图1)为被测对象,采用VC++6.0编程实现。图2为取以下初值和参数所得加密图像:改进的logistic映射x0=0.5,β=3. 835;具有一次耦合项的二维l0gistic映射x0=0.1,y0=0.11,γ=0.31,μ1=0.8,μ2=0.2。,从加密结果可以隐约看出原图像的一些轮廓。

基于合成混沌序列的图像加密算法

对原始图像直方图(图3)和一次加密图像直方图(图4)进行比较,可以看出一次加密后像素在(0,255)区间上的分布已经较原图像均匀。

基于合成混沌序列的图像加密算法

在此基础上,再取如下初值、参数得图5:改进的logistic映射x0 =0.7,β=3.7655;具有一次耦合项的二维logistic映射x0=0.5,y0=0. 55,γ=0.45,μ1=0.7,μ2=0.3。从加密后的图像已完全看不出原来的影子,再查看二次加密后的直方图(图6)。像素在(0,255)区间上的分布非常均匀。

基于合成混沌序列的图像加密算法

2、安全性分析

该加密算法为对称加密算法,即其解密算法为加密算法的逆过程。使用原始加密数据进行解密,解密结果如图7所示。该加密算法的安全性主要在于初值和参数的个数较多,即使其中几 个数据在解密精度范围内,也无法解密讲图8为只改变一个初值0.000001,其它数据均与原始数据相同进行解密所得结果。可以看出,解密是不成功的6可见,要想使用穷举法进行解密几乎是不可能的,所以其安全性是非常可靠的。

基于合成混沌序列的图像加密算法

小知识之LFSR

线性反馈移位寄存器(LFSR)是一个产生二进制位序列的机制。这个寄存器由一个初始化矢量设置的一系列信元组成,最常见的是,密钥。这个寄存器的行为被一个时钟调节。在每个定时时刻,这个寄存器信元的内容被移动到一个正确的位置,这个排外的或这个信元子集内的内容被放在最左边的信元中。输出的一个位通常来自整个更新程序。LFSR的应用包括产生伪随机数字,伪噪声序列,快速数字计算器和灰数序列。LFSR软件和硬件的执行是相同的。

立即下载试用

基于动态信任的内生安全架构

动态信任是一种新型的信息安全架构,近年来随着物联网、云计算和移动化等技术的发展而逐渐受到关注。传统的信息安全架构往往是建立在固定的信任模型之上,而动态信任则更加灵活和自适应,可以根据实际情况动态调整信任度,从而提高整个系统的安全性。本文将从以下几个方面来探讨基于动态信任的内生安全架构,包括动态信任的概念、功能特点、应用场景、实现方法等。

一、动态信任的概念

动态信任是指基于多方交互和数据分析,根据实时风险评估结果自适应调整信任度的一种信任模型。它与传统的访问控制模型不同,传统模型是基于身份验证和访问授权来限制访问权限的,而动态信任则更加注重实时风险评估和动态调整信任度。动态信任由于其灵活性和自适应性被广泛应用于物联网、云计算和移动化等领域,成为一种新型的内生安全框架。

二、动态信任的功能特点

1、实时风险评估
动态信任的核心是实时风险评估,通过对多方交互数据的分析、模型预测和机器学习等方法,从而实现对用户、设备、应用以及网络等方面的风险评估。同时,动态信任支持多种评估方法,可以根据实际情况选择不同的评估方法来评估系统的安全性。

2、动态调整信任度
动态信任可以根据实时风险评估结果自适应调整信任度,从而提高整个系统的安全性。例如,对于一个新的设备或应用,由于缺少足够的信任度,系统可以限制其访问权限,等到其表现良好后再逐步增加信任度。另外,在不同的应用场景中,可以根据不同的容错需求设置不同的信任阈值,从而更加灵活地调整系统的安全性。

3、安全事件的自适应响应
基于动态信任的内生安全框架可以根据实时风险评估结果自适应响应安全事件,例如实时阻断异常访问或异常信任行为等,从而保护整个系统的安全。另外,动态信任还可以实现安全威胁预警和安全日志审计等功能,为后续的安全事件响应提供支持。

三、动态信任的应用场景

基于动态信任的内生安全框架适用于物联网、云计算和移动化等领域,可以提高系统的安全性和稳定性。具体应用场景如下:

1、物联网领域
对于物联网场景,动态信任可以实现对设备、应用、用户等的实时风险评估和动态信任管理,从而保护整个物联网系统的安全。例如,可以基于设备的行为、属性等数据进行风险评估,判断设备是否存在安全风险,并进行相应的防御措施。

2、云计算领域
对于云计算场景,动态信任可以实现对用户、应用、网络等的实时风险评估和自适应调整信任度,从而提高整个云计算系统的安全性和稳定性。例如,可以根据用户的访问情况和应用的行为数据等进行风险评估,判断用户和应用是否存在安全风险,并相应的限制其访问权限。

3、移动化场景
对于移动应用场景,动态信任可以实现对应用、用户等的实时风险评估和自适应调整信任度,从而保护整个移动应用系统的安全。例如,可以根据应用的行为数据、用户的位置信息等进行风险评估,判断应用和用户是否存在安全风险,并相应的限制其访问权限。

四、动态信任的实现方法

基于动态信任的内生安全框架的实现方法主要包括以下几个方面:

1、机器学习技术
机器学习技术可以实现对多方交互数据的分析和预测,进而实现实时风险评估和动态信任管理。例如,可以使用支持向量机、神经网络、朴素贝叶斯等算法对数据进行分类和预测,从而实现安全风险评估。

2、分布式计算技术
分布式计算技术可以实现对大规模数据的分析和处理,多种评估方法的实现和系统的扩展性等。例如,可以使用MapReduce等分布式计算技术来实现大规模数据的分析和处理,从而提高系统的效率和准确性。

3、安全日志管理技术
安全日志管理技术可以实现对安全事件的记录、分析和响应等功能,从而提高系统的安全性和稳定性。例如,可以使用SIEM技术来实现安全事件的实时监测、分析和响应,从而提供相应的安全保障。

总之,基于动态信任的内生安全框架是一种新型的信息安全架构,其具有灵活性和自适应性等特点,可以根据实际情况动态调整信任度,提高整个系统的安全性。在物联网、云计算和移动化等领域具有广泛的应用前景,同时也面临着各种技术挑战和安全威胁。因此,我们需要进一步探索动态信任技术的研究和应用,并积极探索基于动态信任的内生安全框架的实现方法和应用策略,从而实现网络信息安全的可靠保障。

本文为收集整理,文章部分观点不代表本站观点,如有侵权或其它问题请反馈客服。https://www.wgj7.com/cjwt/16346.html