安企神电脑监控软件 在线试用
扫码咨询客服
安企神电脑监控软件、局域网监控软件
首页
功能介绍
产品简介
下载中心
帮助中心
客户列表
关于安企神

加密算法之ElGamal算法

更新时间:2022-10-28 15:42:06


本文简介:ElGamal算法既能用于数据加密也能用于数字签名,其安全性依赖于计算有限域上离散对数这一难题。密钥对产生办法。首先选择一个素数p,两个随机数, g 和x,g, x < p, 计算 y = g^x ( mod p ),则其公钥为 y, g 和p。私钥是x。g和p可由一组用户共享。ElGamal用于数字签名。被签信息为M,首先选择一个随机数k, k与 p - 1互质,计算a = g^k ( m

加密算法之ElGamal算法

ElGamal算法既能用于数据加密也能用于数字签名,其安全性依赖于计算有限域上离散对数这一难题。

密钥对产生办法。首先选择一个素数p,两个随机数, g 和x,g, x < p, 计算 y = g^x ( mod p ),则其公钥为 y, g 和p。私钥是x。g和p可由一组用户共享。

ElGamal用于数字签名。被签信息为M,首先选择一个随机数k, k与 p - 1互质,计算a = g^k ( mod p )

再用扩展 Euclidean 算法对下面方程求解b: M = xa + kb ( mod p - 1 )

签名就是( a, b )。随机数k须丢弃。

验证时要验证下式:

y^a * a^b ( mod p ) = g^M ( mod p )

同时一定要检验是否满足1<= a < p。否则签名容易伪造。

ElGamal用于加密。被加密信息为M,首先选择一个随机数k,k与 p - 1互质,计算a = g^k ( mod p )

b = y^k M ( mod p )

( a, b )为密文,是明文的两倍长。解密时计算M = b / a^x ( mod p )

ElGamal签名的安全性依赖于乘法群(IFp)* 上的离散对数计算。素数p必须足够大,且p-1至少包含一个大素数

因子以抵抗Pohlig & Hellman算法的攻击。M一般都应采用信息的HASH值(如SHA算法)。ElGamal的安全性主要依赖于p和g,若选取不当则签名容易伪造,应保证g对于p-1的大素数因子不可约。D.Bleichenbache“GeneratingElGamal Signatures Without Knowing the Secret Key”中提到了一些攻击方法和对策。ElGamal的一个不足之处是它的密文成倍扩张。

美国的DSS(Digital Signature Standard)的DSA(Digital Signature Algorithm)算法是经ElGamal算法演变而来。

立即下载试用

企业为什么选择加密系统来防止数据泄露

  随着互联网的普及和网络安全的防范应用,网络化办公在给企业带来便利的同时,也给企业内部数据安全提出了更高的要求。面对企业数据安全的防范问题,传统的设备采用被动式响应防御,不适于内部局域网管理,企业要么改变传统的运作方式去适应这种变化,要么便需要寻求专业的数据加密系统来加以防护。


 

       安企神加密系统可以对公司重要文件进行主动加密,不仅仅是防止外来人员的窃取,更多的是防止内部人员的主动泄密,全面保护文件安全,同时管控内部员工的上网行为,提高办公效率。安企神采用了全新的解决方案,通过对现有的终端系列操作系统进行安全增强,让企业管理者能够对终端进行集中管理和控制,保证信息系统始终在可控状态下运行,从根源上有效抑制对信息系统安全的威胁,最终达到防止内部用户泄密以及外部用户攻击的目的。

 

       安企神兼具文档加密、权限管理以及安全网关控制,加密透明无感知,文档权限管理更加细致,企业无须改变原有的应用,也无须改变文档的流通习惯,可以很好保护机密文档在企业内外的使用安全,帮助企业搭建符合安全法规要求的信息保护体系。


本文为收集整理,文章部分观点不代表本站观点,如有侵权或其它问题请反馈客服。https://www.wgj7.com/cjwt/16173.html